Lesson 10.4
Mathematical Induction

10.4 Mathematical Induction
A powerful tool for proving all kinds of theorems about positive integers

Let S_n be a statement involving the positive integer n.
To prove that S_n is true for all positive integers n requires two steps.

Step 1 Show that S_1 is true.
Step 2 Show that if S_k is assumed to be true, then S_{k+1} is also true, for every positive integer k.
The principle of mathematical induction can be illustrated using an unending line of dominoes. If the first domino is pushed over, it knocks down the next, which knocks down the next and so on, in a chain reaction. To topple all the dominoes in the infinite sequence, two conditions must be satisfied:

1. The first domino must be knocked down.
2. If the domino in position \(k \) is knocked down, then the domino in position \(k+1 \) must be knocked down.

http://www.youtube.com/watch?v=WmNczv9jHcg&feature=related
http://www.youtube.com/watch?feature=player_embedded&v=Vp9zLbIE8zo

Mathematical Induction

\[
1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}
\]

Step 1: Show that \(S_1 \) is true.
\[
1 = \frac{1(1+1)}{2} \quad \checkmark
\]

Step 2: Show that if \(S_k \) is true, then \(S_{k+1} \) is true.

\[
1 + 2 + 3 + \ldots + k = \frac{k(k+1)}{2}
\]

Now add the next term, \(k+1 \), to both sides of \(S_k \)

\[
1 + 2 + 3 + \ldots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)
\]

\[
1 + 2 + 3 + \ldots + (k+1) = \frac{k(k+1)}{2} + \frac{2(k+1)}{2}
\]

\[
1 + 2 + 3 + \ldots + (k+1) = \frac{(k+1)(k+2)}{2}
\]
Mathematical Induction

\[1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6} \]

Step 1: Show that \(S_1 \) is true

\[1^2 = \frac{1(1+1)(2\cdot1+1)}{6} \quad \checkmark \]

Step 2: Show that if \(S_k \) is true, then \(S_{k+1} \) is true.

\[S_k \Rightarrow 1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k+1)(2k+1)}{6} \]

\[S_{k+1} \Rightarrow 1^2 + 2^2 + 3^2 + \ldots + (k+1)^2 = \frac{k+1(k+2)(2k+3)}{6} \]

Now add the next term, \((k+1)^2\), to both sides of \(S_k \)

\[1^2 + 2^2 + 3^2 + \ldots + k^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \]

\[\frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6} \]

\[= \frac{(k+1)}{6} [k(2k+1) + 6(k+1)] \]

\[= \frac{(k+1)}{6} (2k^2 + 7k + 6) \]

\[= \frac{(k+1)(k+2)(2k+3)}{6} \]

This statement is \(S_{k+1} \)
Mathematical Induction \[1 + 3 + 6 + \ldots + \frac{n(n+1)}{2} = \frac{n(n+1)(n+2)}{6} \]

Step 1 Show true for \(n=1 \)

\[1 = \frac{1(1+1)(1+2)}{6} \] \(\checkmark \)

Step 2 \(S_k \rightarrow 1 + 3 + 6 + \ldots + \frac{k(k+1)}{2} = \frac{k(k+1)(k+2)}{6} \)

\[S_{k+1} \rightarrow 1 + 3 + 6 + \ldots + \frac{k(k+1)}{2} + \frac{(k+1)(k+2)}{2} = \frac{k(k+1)(k+2)}{6} + \frac{(k+1)(k+2)}{2} \]

\[\frac{k(k+1)(k+2)}{6} + \frac{(k+1)(k+2)}{2} = \frac{(k+1)(k+2)(k+3)}{6} \]

Mathematical Induction \[6 + 10 + 14 + \ldots + (4n+2) = n(2n+4) \]

Step 1 Show true for \(n=1 \)

\[6 = 1(2(1)+4) \] \(\checkmark \)

Step 2 \(S_k \rightarrow 6 + 10 + 14 + \ldots + 4k+2 = k(2k+4) \)

\[S_{k+1} \rightarrow 6 + 10 + 14 + \ldots + (4k+2) + (4(k+1)+2) = (k+1)(2(k+1)+4) \]

\[6 + 10 + 14 + \ldots + (4k+2) + (4(k+1)+2) = k(2k+4) + (4(k+1)+2) \]

\[= 2k^2 + 8k + 6 \]

\[= (2k+6)(k+1) \]
Mathematical Induction
Prove that 2 is a factor of $n^2 + 5n$ for all positive integers n

Step 1: Show that S_1 is true. $1^2 + 5(1) = 6$, 2 is a factor of 6
Step 2: Show that if S_k is true, then S_{k+1} is true.

S_k: 2 is a factor of $k^2 + 5k$
S_{k+1}: 2 is a factor of $(k+1)^2 + 5(k+1)$
S_{k+1}: $k^2 + 2k + 1 + 5k + 5$
S_{k+1}: $k^2 + 7k + 6$
S_{k+1}: $(k^2 + 5k) + (2k + 6)$
S_{k+1}: divisible by 2 divisible by 2
Mathematical Induction 3 is a factor of $n^3 - 4n$

Mathematical Induction $1 + 4 + 4^2 + ... + 4^{n-1} = \frac{4^n - 1}{3}$
Mathematical Induction \[4^n - 1 \text{ is divisible by 3} \]

Assignment:

Lesson 10.4

9, 10, 17-24