The derivative of the quotient of two functions.

\[
\left(\frac{f(x)}{g(x)} \right)' = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{(g(x))^2}
\]

Low d-High minus High d-Low
over the denominator squared

MATH is FUN!
\[
\left(\frac{f(x)}{g(x)} \right)' = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{(g(x))^2}
\]
\[
f(x) = \frac{x^2 + 3x - 2}{2 - x^2}
\]
\[
f'(x) = \frac{(2 - x^2)(2x + 3) - (x^2 + 3x - 2)(-2x)}{(2 - x^2)^2}
\]
\[
f'(x) = \frac{4x + 6 - 2x^3 - 3x^2 + 2x^3 + 6x - 4x}{(2 - x^2)^2}
\]
\[
f'(x) = \frac{3x^2 + 6}{(2 - x^2)^2} = \frac{3(x^2 + 2)}{(2 - x^2)^2}
\]

\[
f(x) = \frac{(25 - x^2)^{\frac{1}{2}}}{5x}
\]
\[
\left(\frac{f(x)}{g(x)} \right)' = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{(g(x))^2}
\]
\[
f'(x) = \frac{5x \left(\frac{1}{2} (25 - x^2)^{\frac{1}{2}} \cdot -2x \right) - \left(\frac{25 - x^2}{(5x)^2} \right)(5)\right)}{\frac{1}{25x^2}}
\]
\[
f'(x) = \frac{-5x^2}{\sqrt{25 - x^2}} \cdot \frac{1}{25x^2}
\]
\[
f'(x) = -5x^2 - 5(25 - x^2) \cdot \frac{1}{25x^2} = \frac{-25x^2}{x^2 \sqrt{25 - x^2}}
\]
\[
f'(x) = \frac{-125}{x^2 \sqrt{25 - x^2}} \cdot \frac{1}{25x^2} = \frac{-5}{x^2 \sqrt{25 - x^2}}
\]
Use the quotient rule to find the derivative of each function.

1. \(f(x) = \frac{x}{1-x} \)
2. \(f(x) = \frac{x^2+2}{x-2} \)
3. \(f(x) = \frac{1-x^2}{2-x} \)
4. \(f(x) = \frac{\sqrt{1+x}}{2x} \)
5. \(f(x) = \frac{\sqrt{9-x^2}}{2x} \)
6. \(f(x) = \frac{x^2-x+1}{x^2+1} \)

Find the equation of the tangent line to the graph of the function at the indicated point.

7. \(f(x) = (x^3 - 9)(\sqrt{x+2}) \) at \(x = -1 \)
8. \(f(x) = \frac{x+1}{2x-3} \) at \(x = 2 \)

9. The temperature \(T \) of a person during an illness is given by \(T(t) = \frac{2t}{t^2+1} + 98.6 \), where \(T \) is the temperature, in degrees Fahrenheit, at time \(t \), in hours.
 (a) Find the rate of change of the temperature with respect to time.
 (b) Find the temperature at \(t = 1 \).
 (c) Find the rate of change of the temperature at \(t = 1 \).